日本一二三区视频|国产精品欧美天美传媒|中文字幕婷婷日本本卡|国内精品久久久久国产盗摄|国产xxxx99真实实拍|国内高清一区二区三区视频|精品卡通动漫亚洲av第一页|97久久人妻一区二区中文无码

0731-82716163

Exhaust gas treatment technology

Products > Exhaust gas Treatment > Exhaust gas treatment technology

Exhaust gas treatment technology

There are many domestic organic waste gas treatment technologies, but as far as their working principles are concerned, they can be divided into the following eight types:

      1. Adsorption: The use of an adsorbent to physically combine with a volatile organic compound or a chemical reaction to remove contaminated components.

      2. Absorption: The organic waste gas and the washing liquid are brought into full contact to realize the transfer of pollution molecules, and then the organic waste gas molecules are completely removed by chemical agents.

      3. Condensation: The exhaust gas is cooled to the "freezing point" of the organic exhaust gas molecules, which are condensed to a liquid state and then recovered.

      4. Membrane separation: Use synthetic membrane to separate toxic substances in exhaust gas.

      5. Biodegradation: Microbes digest and metabolize pollutants in waste gas, and convert the pollutants into harmless water, carbon dioxide and other inorganic salts.

      6. Thermal incineration: Based on the characteristics of organic compounds in the exhaust gas that can be burned and oxidized, it is converted into harmless carbon dioxide and water.

      7. Plasma: The plasma field is enriched with a large number of active species, such as ions, electrons, excited atoms, molecules, and free radicals; active species dissociate small molecules of pollutant molecules.

      Plasma is mainly suitable for organic waste gas treatment with high concentration and relatively low temperature. It is generally suitable for the recovery and treatment of organic waste gas with high VOCs content and small gas content. Since most VOCs are flammable and explosive gases, subject to the limit of explosion, the VOCs content in the gas will not be too high, so it must be higher. The recovery rate needs to adopt very low-temperature condensing medium or high-pressure measures, which will inevitably increase equipment investment and processing costs. Therefore, this technology is generally used as a good processing technology and combined with other technologies.

      8. Photooxycatalysis: Photocatalyst nanoparticles are stimulated to generate electron-hole pairs when irradiated with light of a certain wavelength. Water adsorbed on the surface of the hole-decomposition catalyst generates hydroxyl radicals OH, and the electrons reduce the surrounding oxygen to active ion oxygen. Therefore, it has a strong redox capacity and can destroy various pollutants on the surface of the photocatalyst.



Next: End
阿合奇县| 辰溪县| 双辽市| 平顶山市| 盈江县| 松江区| 绥中县| 安岳县| 探索| 栖霞市| 岳阳市| 齐河县| 华亭县| 随州市| 毕节市| 香河县| 双鸭山市| 菏泽市| 沾益县| 华亭县| 湛江市| 北辰区| 东光县| 卢湾区| 富源县| 安义县| 昌乐县| 西贡区| 高陵县| 翁源县| 漠河县| 南华县| 莱西市| 湛江市| 哈密市| 辉南县| 昭苏县| 延川县| 蓬安县| 永川市| 新昌县|